Density of 1/(1 + x)-Polynomials in $C[\gamma, \infty]$

CHARLES B. DUNHAM

Computer Science Department, University of Western Ontario, London, Ontario, Canada N6A 5B9

Communicated by Carl de Boor

Received May 19, 1975

Let $\gamma \ge 0$, let $C[\gamma, \infty]$ be the space of continuous functions on $[\gamma, \infty]$, and let $\phi(x) = 1/(1 + x)$. Then a ϕ -polynomial on $[\gamma, \infty]$ is an expression of the form

$$\sum_{k=1}^n a_k \phi(\alpha_k x) = \sum_{k=1}^n a_k / (1 + \alpha_k x), \qquad 1 + \alpha_k x > 0.$$

Sets of ϕ -polynomials are among the best known curves of functions [4, p. 91]. Best Chebyshev approximation by ϕ -polynomials on [γ , ∞] is considered in [3]. Density results for ϕ -polynomials (on a finite range) follow from the theory of [2].

DEFINITION. A sequence of functions is *fundamental* in a subset G of $C[\alpha, \beta]$ if the set of (finite) linear combinations of the functions is dense in G (with respect to the Chebyshev norm on $[\alpha, \beta]$).

LEMMA. Let $\gamma > 0$. Let $\{\beta_k\}$ be a positive sequence with limit zero and $\psi(x) = 1/(1 + 1/x) = x/(1 + x) = 1 - 1/(1 - x)$. The sequence of functions $\{1, \psi(\beta_1 x), \psi(\beta_2 x), \ldots\}$ is fundamental in $C[0, 1/\gamma]$. The sequence of functions $\{\psi(\beta_1 x), \psi(\beta_2 x), \ldots\}$ is fundamental in the continuous functions on $[0, 1/\gamma]$ which vanish at 0.

Proof. ψ has a Taylor series about zero with all but the zeroth coefficient nonzero. Apply the theory of [2].

THEOREM. Let $\gamma > 0$. Let $\{\alpha_k\}$ be a sequence with limit ∞ . The set $\{1, \phi(\alpha_1 x), \phi(\alpha_2 x)....\}$ is fundamental in $C[\gamma, \infty]$.

Proof. Let $f \in C[\gamma, \infty]$ and $\epsilon > 0$ be given. Let y(x) = 1/x and define

g(y) = f(x) = f(1/y) for $0 \le y < 1/\gamma$. g is in C[0, $1/\gamma$]. Let $\beta_i = 1/\alpha_i$. By the above lemma, we have for some n, $a_1, ..., a_n$,

$$\Big| g(y) - a_1 - \sum_{k=2}^n a_k / (1 - 1/(eta_k y)) \Big| < \epsilon = 0 < |y| < 1/\gamma.$$

Since $1/(\beta_k y) = \alpha_k x$, we have

$$\left|f(x)-a_1-\sum_{k=2}^n a_k/(1-x_kx)\right| < \epsilon \quad \gamma = x \quad \infty,$$

proving the theorem.

By similar arguments we have

THEOREM. Let $\gamma > 0$. Let $\{\alpha_k\}$ be a sequence with limit ∞ . The set $\{\phi(\alpha_1 x), \phi(\alpha_2 x),...\}$ is fundamental in the continuous functions on $[\gamma, \infty]$ vanishing at ∞ .

THEOREM. Let $\{\delta_k\}$ be an increasing sequence with limit one. The set $\{1, \phi(\delta_1 x), \phi(\delta_2 x), ...\}$ is fundamental in $C[0, \infty]$.

Proof. Let $\{\alpha_k\} \to \infty$ and $\beta_k = 1/\alpha_k$. Let $f \in C[0, \infty]$ and $\epsilon > 0$ be given. Let y(x) = 1/(1 - x) for $0 \le x \le \infty$, which implies x = (1/y) - 1 for $0 \le y \le 1$. Define g(y) = f(x) = f((1/y) - 1) for $0 \le y \le 1$. g is in C[0, 1]. By the previous lemma, there is $n, a_1, ..., a_n$ such that

$$\left| g(y) - a_1 - \sum_{k=2}^n a_k/(1 + 1/(\beta_k y)) \right| < \epsilon = 0 \le y \le 1.$$

Since $1/(\beta_k y) \sim \alpha_k (1 - x)$, we have

$$\left|f(x)-a_1-\sum_{k=2}^n a_k/(1+x_k(1+x))\right|<\epsilon, \quad 0 \quad x < \infty$$

that is,

$$\left|f(x) - a_1 - \sum_{k=2}^n \left[a_k/(1 - \alpha_k)\right]/[1 - (\alpha_k/(1 - \alpha_k))|x]\right| < \epsilon, \quad 0 \quad x < \infty.$$

Given δ_k in (0, 1), we can choose α_k such that $\alpha_k/(1 + \alpha_k) = \delta_k$. The theorem is proven. By similar arguments we get

THEOREM. Let $\{\delta_k\}$ be an increasing sequence with limit one. The set $\{\phi(\delta_1 x), \phi(\delta_2 x), ...\}$ is fundamental in the set of elements of $C[0, \infty]$ vanishing at ∞ .

Remark. Since the space of approximation is $[0, \infty]$ and we are approximating by ϕ -polynomials, consideration of a multiplicative change of variable shows that the two previous theorems hold for $\{\delta_k\}$ an increasing sequence with any positive limit.

A ϕ -polynomial can also be expressed in the form

$$\sum_{k=1}^n b_k/(eta_k - x), \qquad eta_k + x > 0.$$

Density results for these (on a finite range) are given by Achieser [1, 246 ff., 254 ff.]

References

- 1. N. I. ACHIESER, "Theory of Approximation," Ungar, New York, 1956.
- 2. C. B. DUNHAM, Density of φ -polynomials, J. Approximation Theory 14 (1975), 79-81.
- 3. C. B. DUNHAM, Chebyshev approximation by polynomial-rational sums, Z. Angew. Math. Mech. 55 (1975), 758-759.
- C. R. HOBBY AND J. R. RICE, Approximation from a curve of functions, Arch. Rational Mech. Anal. 24 (1967), 91–106.